Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19113, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925479

RESUMO

Tea plant necrotic ring blotch virus (TPNRBV) has emerged as a significant threat to tea plantations, primarily in China. Since 2020, similar symptoms have been observed in tea plants in northern Iran, raising concerns about the spread of this viral infection. In this study, we conducted an extensive investigation involving approximately 70 samples collected from both symptomatic and asymptomatic tea plants. Using reverse transcription-polymerase chain reaction with specially designed primers, we successfully amplified DNA fragments from 26 samples, confirming the presence of TPNRBV. Subsequent sequencing of these fragments revealed various segments of the TPNRBV genome. Our phylogenetic analysis revealed that the Iranian TPNRBV isolates formed a distinct sub-cluster alongside Chinese isolates, distinguishing them from Japanese isolates. These finding sheds light on the genetic diversity and relationships of TPNRBV across different regions. Additionally, we explored the potential modes of TPNRBV transmission. Mechanical transmission experiments confirmed the ability of the virus to infect Nicotiana rustica and Chenopodium quinoa seedlings, highlighting the risk of mechanical spread within tea plantations. Moreover, we investigated seed transmission and found evidence of TPNRBV in various parts of tea seeds, suggesting the possibility of seed-borne transmission. Overall, this comprehensive study enhances our understanding of the biological and molecular characteristics of TPNRBV, an emerging threat to global tea production. Our findings provide valuable insights into the virus's transmission dynamics and genetic diversity, which are essential for developing effective management strategies to mitigate its impact on tea cultivation worldwide.


Assuntos
Vírus de RNA , Filogenia , Irã (Geográfico) , Vírus de RNA/genética , Plântula , Chá
2.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894095

RESUMO

An analysis of the complete genome sequence of a novel isolate of tomato brown rugose fruit virus (ToBRFV) obtained from tomatoes in Iran and named ToBRFV-Ir is presented in this study. Comprehensive phylogenetic analysis utilizing key viral proteins, including 126 KDa, 183 KDa, movement protein (MP), and coat protein (CP), as well as the complete genome sequence, classified ToBRFV-Ir and 65 isolates from GenBank into three distinct clades. Notably, genetic diversity assessment revealed relatively low variability among the isolates, irrespective of their geographical or clade affiliation. Natural selection analysis based on the complete genome sequence showed that dN/dS values were consistently <1, indicating the prevailing role of negative selection across all populations. Analyses using the Recombination Detection Program and SplitsTree found no evidence of recombination events or signals in the complete genome sequence of the tested isolates. Thus, these results suggest that the genetic composition of ToBRFV remains stable without significant genetic exchange or recombination events occurring. A simple arithmetic comparison of the patristic distances and dates suggested that the time to the most recent common ancestor (TMRCA) of the ToBRFV populations is approximately 0.8 up to 2.7 with the closest tobamoviruses. An evolutionary study of the tested isolates from various countries based on the complete genome suggests Peruvian ancestry. The ToBRF-Ir isolate was successfully transmitted through mechanical inoculations to Solanum lycopersicum and Nicotiana rustica. These findings shed light on the genetic dynamics and transmission mechanisms of ToBRFV, providing valuable insights into its molecular characteristics and potential spread among susceptible plant species.

3.
Viruses ; 15(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37632056

RESUMO

Viral symptoms, such as yellowing, leaf deformation, mottling, vein clearing, and reduced yield, were observed in cucurbits in Iran. This study aimed to detect the main suspected causal agent, cucurbit aphid-borne yellows virus (CABYV), in Iran and analyze the genetic diversity among isolates. Two hundred samples were collected from different growing areas between 2019 and 2022. PCR amplification was performed on the P3 and P4 genes. The sequences of 18 Iranian isolates were obtained and deposited in GenBank. Recombination, phylogenetic, and population genetics studies were then carried out for the complete genome and all ORFs sequences, together with other isolates in GenBank. The nucleotide identities of the overlapped ORF3/4 sequences of Iranian isolates were 94.8 to 99.5% among themselves, and with other tested isolates ranging from 94.3 to 99.3%. Phylogenetic trees based on the complete genome and the overlapped ORF3/4 showed two major clades, namely Asian and Mediterranean, and the new isolates from Iran were positioned in both clades. The obtained results also suggest that all the genes and two clades of CABYV populations were under negative selection pressure. Furthermore, rare gene flow between these two clades (FST > 0.33) confirmed the high genetic separation among them.


Assuntos
Luteoviridae , Irã (Geográfico) , Filogenia , Luteoviridae/genética , Variação Genética
4.
Plants (Basel) ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501319

RESUMO

A total of 112 symptomatic tomatoes (Solanum lycopersicum L.) and 83 symptomatic pepper (Capsicum spp.) samples were collected in Ankara, Eskisehir, Bartin, and Zonguldak provinces of Turkey during 2020-2021. Six tomatoes and one pepper sample (3.6%) tested positive for tomato brown rugose fruit virus (ToBRFV, genus Tobamovirus) infection by DAS-ELISA and RT-PCR. ToBRFV-positive tomato and pepper plants were removed from greenhouses as soon as possible, and the greenhouses and tools were disinfected completely. Phylogenetic analysis on the complete CP sequences suggested the clustering of 178 GenBank isolates and 7 novel isolates into three groups. A study using DnaSP software showed very low genetic variation among current global ToBRFV isolates. All four ORFs of the virus genome were under strong negative evolutionary constraints, with a ω value range of 0.0869-0.2066. However, three neutrality tests indicated that most populations of the newly identified ToBRFV are currently expanding by assigning statistically significant negative values to them. The very low FST values (0.25 or less) obtained by all comparisons of the isolates from Europe, the Middle East, China, and America concluded that there is no clear genetic separation among currently known isolates from different geographic origins. The divergence time of ToBRFV was estimated to be in the middle of the course of the evolution of 11 tested tobamoviruses. The time to the most recent common ancestors (TMRCAs) of ToBRFV were calculated to be 0.8 and 1.87 with the genetically closest members of Tobamovirus. The results of this study could improve our understanding on the population structure of the emerging ToBRFV.

5.
Virus Genes ; 58(6): 550-559, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960462

RESUMO

Beet curly top Iran virus (BCTIV) is a member of the genus Becurtovirus (Family Geminiviridae) with a circular single-strand DNA genome. BCTIV causes leaf curling and vein swelling symptoms in plants. However, the potential pathogenicity factor/s in BCTIV is/are not known. This study presents characterization of complementary-sense transcripts of BCTIV and the viral factors in directing the pathogenicity and hypersensitive response (HR) in Nicotiana benthamiana plants. In both local and systemic infection, splicing of the complementary transcripts of BCTIV was observed. Notably, a small number (8.3%) of transcripts were spliced to produce Rep (C1:C2) transcripts after deletion of 155 nt (position 1892-2046 from BCTIV). Expression of BCTIV genes in N. benthamiana using tobacco rattle virus (TRV)-based vector showed that Rep together with C1 are the main pathogenicity factors which cause typical viral leaf curling symptoms. In addition, the V2 caused a mild leaf curling, thickening, and asymmetric leaves, while the V1, V3, and C2 had no clear effect on the plant phenotype. Transient expression of individual viral genes showed that both the C1 and Rep trigger a HR response in N. benthamiana. The higher expression of HR marker genes, harpin-induced 1 (Hin1) and hypersensitivity-related (Hsr203JI), supported the role of C1 and Rep in HR response in plants. It is concluded that Rep and C1 are the main pathogenicity factors that also trigger HR response in plants.


Assuntos
Beta vulgaris , Geminiviridae , Nicotiana , Fatores de Virulência/genética , Irã (Geográfico) , Doenças das Plantas , Plantas
6.
3 Biotech ; 11(8): 368, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34295608

RESUMO

Grapevine Pinot gris virus (GPGV) is a novel member of Trichovirus genus in Betaflexiviridae family. During 2018-2019, 114 leaf and green shoot samples were collected from the main vineyards in Iran Zanjan, Hamedan and East Azerbaijan provinces. After total RNA extraction and cDNA synthesis, the samples were tested by PCR assay using two pairs of specific primers corresponding to the coat protein (CP) and movement protein (MP) regions of GPGV, in which 6 out of 114 samples were found to be infected by GPGV. Population genetics analysis and molecular evolution of GPGV were done based on the CP and MP gene sequences of six new Iranian isolates and 53 additional isolates from several different countries in three continents: Asia, Europe, and America. The phylogenetic tree of GPGV isolates was clustered into two independent clades with significant F ST values (> 0.44). The ω values were calculated < 1 for the GPGV isolates for both genes. These findings demonstrated that the GPGV evolutionary selection pressure is under negative selection. To our knowledge, this is the first detailed study on the molecular characterization, phylogenetic analysis, and provide a better understanding of the population evolution of GPGV isolates from vineyards in Iran. The new Iranian isolates were lied in a new cluster near to European isolates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02914-5.

7.
3 Biotech ; 11(2): 43, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489666

RESUMO

One of the destructive potyviruses which cause economic damage and serious yield losses to cucurbit crops around the world is Watermelon mosaic potyvirus. In 2016, 305 leaf samples from different cucurbit cultivars with deformation and reduction in leaf size, blistering, mild and severe mosaic symptoms were collected from different cucurbits-growing regions in Northwest of Iran. Total RNA and their cDNA were tested by RT-PCR assay using two sets of specific primers corresponding to the partial sequences of CP and P1 genomic regions, in which approximately 80 out of 305 samples were found to be infected by WMV. DNA fragments of about 780 bp and 545 bp in length were amplified that belonged to the CP and P1 genes, respectively. Phylogenetic trees of WMV isolates were clustered into three main independent groups with significant F ST values (> 0.50 and > 0.55) for CP and P1 genes, respectively. dN/dS ratios obtained less than one (< 1) for CP gene that showed the WMV populations have been under the negative selection, whereas for P1 gene, the dN/dS values were calculated > 1 for EM clade containing; China, France, and Italy populations and < 1 for CL and G2 clades; South Korea and Iran populations. This results demonstrated that the WMV evolutionary selection pressure on the P1 gene is dependent on conditions such as the variety of cultivars and the type of cultivation.

8.
Microorganisms ; 8(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352781

RESUMO

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.

9.
Int J Biol Macromol ; 165(Pt A): 619-624, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007323

RESUMO

Kefiran is a water-soluble polysaccharide well recognized as a bioactive ingredient to enhance nutritional and health-promoting features. Also, some therapeutic properties have made this macromolecule an active ingredient in ointments and oral anti-inflammatory drugs. However, the details of the molecular and cellular aspects of these effects have not been addressed. In this study, lipopolysaccharides (LPS)-induced monocytes, lymphocytes, and monocyte-derived dendritic cells (MDDCs) as representative cells for both innate and adaptive immunity were treated with kefiran for 2 h. Kefiran had an anti-inflammatory effect on monocytes to reduce pro-inflammatory cytokines, interleukin 1 ß (IL-1ß) & tumor necrosis factor α (TNF-α), as well as nuclear factor kappa b (NF-kb). However, it did not affect lymphocytes. Overexpression of Toll-like receptor 4 (TLR4) in LPS-induced cells was not reduced after kefiran treatment. Kefiran balanced MDDCs secretion of pro/anti-inflammatory cytokines by reducing and enhancing the expression of IL-1ß and interleukin 10 (IL-10), respectively. Also, kefiran decreased the number of apoptotic immature MDDCs and promoted dose-dependent phagocytosis capacity of MDDCs. According to the results of the current study, it may be concluded that the immunomodulatory effects of kefiran are due to antagonist against innate immune receptors especially TLR4. The results of this study can be used as a guide to developing kefiran-based non-aggressive anti-inflammatory drugs. Furthermore, understanding the immunobiological effects of kefiran on monocytes and lymphocytes was another outcome of this study.


Assuntos
Anti-Inflamatórios/farmacologia , Células Dendríticas/imunologia , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Monócitos/imunologia , Polissacarídeos/farmacologia , Adolescente , Adulto , Células Dendríticas/patologia , Humanos , Masculino , Monócitos/patologia , Monocinas/imunologia , Receptor 4 Toll-Like/imunologia
10.
Immunobiology ; 225(5): 151984, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32962811

RESUMO

In the present research, a lipophilic methotrexate (MTX) prodrug was developed by covalent conjugating of MTX to stearic acid (SA) as a lipid moiety via amid bond. The structure of synthesized conjugate, MTX-SA, was confirmed by IR and NMR spectra. To evaluate inflammatory response of MTX-SA conjugate and MTX, human PBMCs were isolated and exposed to 50, 500 and 5000 nM of MTX-SA conjugate and free MTX. The expression of four key genes involved in inflammation and apoptosis including IL-8, IL-1ß, IL-10 and Bcl2 depicted that the MTX-SA had controversial behavior in different doses on the inflammatory transcription. Also, MTX-SA statically decreased the number of immune live cells in comparison to MTX. However, MTX-SA did not capture PBMCs cell cycle in G0/G1 phase. Totally, these results showed MTX-SA with long lipid chain has different effect on immune responses and it is irrefutable that detailed studies of its immunotoxicity and immunogenicity ought to be taken into account.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Metotrexato/farmacologia , Pró-Fármacos/farmacologia , Ácidos Esteáricos/farmacologia , Adolescente , Adulto , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoensaio , Contagem de Leucócitos , Leucócitos Mononucleares/metabolismo , Masculino , Metotrexato/química , Pró-Fármacos/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ácidos Esteáricos/química , Adulto Jovem
11.
Plant Pathol J ; 34(6): 514-531, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588225

RESUMO

Tomato spotted wilt virus (TSWV; Genus Orthotospovirus: Family Tospoviridae) is one of the most destructive viruses affecting a wide range of horticultural crops on a worldwide basis. In 2015 and 2016, 171 leaf and fruit samples from tomato (Solanum lycopersicum) plants with viral symptoms were collected from the fields in various regions of Iran. ELISA test revealed that the samples were infected by TSWV. The results of RT-PCR showed that the expected DNA fragments of about 819 bp in length were amplified using a pair of universal primer corresponding to the RNA polymerase gene and DNA fragments of ca 777 bp and 724 bp in length were amplified using specific primers that have been designed based on the nucleocapsid (N) and non-structural (NSs) genes, respectively. The amplified fragments were cloned into pTG19-T and sequenced. Sequence comparisons with those available in the GenBank showed that the sequences belong to TSWV. The high nucleotide identity and similarities of new sequences based on the L, N, and NSs genes showed that minor evolutionary differences exist amongst the isolates. The phylogenetic tree grouped all isolates six clades based on N and NSs genes. Phylogenetic analysis showed that the Iranian isolates were composed a new distinct clade based on a part of polymerase, N and NSs genes. To our knowledge, this is the first detailed study on molecular characterization and genetic diversity of TSWV isolates from tomato in Iran that could be known as new clade of TSWV isolates.

12.
Plant Pathol J ; 32(5): 452-459, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27721695

RESUMO

The genomic region of Grapevine fanleaf virus (GFLV) encoding the movement protein (MP) was cloned into pET21a and transformed into Escherichia coli strain BL21 (DE3) to express the protein. Induction was made with a wide range of isopropyl-ß-D-thiogalactopyranoside (IPTG) concentrations (1, 1.5, and 2 mM) each for duration of 4, 6, or 16 h. However, the highest expression level was achieved with 1 mM IPTG for 4 h. Identity of the expressed protein was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting. The expressed 41 kDa protein was purified under denaturing condition by affinity chromatography, reconfirmed by Western blotting and plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) before being used as a recombinant antigen to raise polyclonal antibodies in rabbits. Purified anti-GFLV MP immunoglobulines (IgGs) and conjugated IgGs detected the expressed MP and GFLV virions in infected grapevines when used in PTA-ELISA, double antibody sandwich-ELISA, and Western blotting. This is the first report on the production of anti-GFLV MP polyclonal antibodies and application for the virus detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...